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a b s t r a c t

The effect of equine fecal inocula on the invitro gas,methane (CH4), and carbondioxide (CO2) productionwas
elucidated in the present study. Fecal inoculawere obtained from four Azteca horses (aged 5e8 years, 480 ±
20.1 kg). In vitro fermentation (up to 48 hours) was performed with substrate consisting of 50% (w/w) oat
straw and 50% (w/w) of a commercial concentrate in the presence of a commercial Lactobacillus farciminis
product (0e6 mg/g DM of substrate). Incorporation of L. farciminis resulted in increased levels of asymptotic
gas (GP), CH4, and CO2 production (P < .05). The lag time and the rate of GP were shown to be independent
from L. farciminis addition (linear,P> .05;quadric,P> .05). Furthermore, a slight reduction in fermentationpH
(linear, P ¼ .029) and higher metabolizable energy values (P ¼ .001) were obtained with L. farciminis sup-
plementation in a dose-dependentmanner. No significant impact of L. farciminis on drymatter degradability
values was estimated (P > .05). In vitro gas, CH4, and CO2 production were increased (linear, P � .001) in the
presence of L. farciminis from 6 hours of incubation onward. In conclusion, addition of L. farciminis at a dose-
dependent manner (2e6 mg/g DM of diet) was observed to be persuasive in terms of attaining amicable
hindgut fermentationby improving fecalgaskineticsviz. gas,CH4, andCO2productionwithout anysideeffect.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Horses belong to non-ruminant herbivores and therefore, the
hindgut represents a fermentative chamber for dynamic and
diversified microbiota. These microbes ferment the fibers gradually
and endow horses to prosper on a high-fiber forage-rich feed to
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retain their normal digestive system. Volatile fatty acids, obtained
by fermentation of fibers, are the dominant energy sources (>50%)
for horses [1]. Similarly, starch-rich forage such as cereal grains are
relevant sources of energy in concentrate feeds for horses. How-
ever, feeding disorders including hindgut acidosis, gastric ulcera-
tion, laminitis, endotoxemia, and colic have been linked to feeding
high-starch grain diets [2]. Furthermore, an alteration of small in-
testinal starch digestibility was reported, thereby resulting in an
alteration of the microbial population and fibrolytic activity in the
hindgut [3] and therefore, a significant reduction of energy utili-
zation from the diet. There is an urgent need for fiber-based diets
containing lower amounts of sugars and starch to acquire the en-
ergy demands of horses and to maintain their health and integrity
by reducing incidence of feeding disorders. In addition, there is an
increased demand to enhance the athletic high-level performances
of modern horses. This aim could be achieved by establishing new
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feeding strategies to meet the necessary nutrient requirements of
horses.

The health benefits of consuming probiotics, especially lactic
acid bacteria (LAB), have created immense interest among re-
searchers globally. Lactic acid bacteria are generally regarded as
safe [4], and some LAB have been reported to tolerate the condi-
tions of the gastrointestinal tract [5]. Furthermore, LAB are known
to affect gas production (GP) in monogastric animals. Tsukahara
et al [6] reported a significant reduction in intestinal GP, particu-
larly carbon dioxide (CO2) in pigs in the presence of LAB. However,
hydrogen sulphide production was increased, and a negative
correlation between the hydrogen sulphide and methane (CH4)
production was reported. Takahashi et al [7] demonstrated the
impact of LAB on rumen methanogenesis and reported an increase
in total gas, CH4, and CO2 production. The ability of LAB to affect
fermentation in an animal is strongly dependent on the chemical
composition of the diets.

Currently, Lactobacilli have not been used effectively playing
promising role in horse feeding. However, Lactobacilli are of interest
not only because of their potential contribution to fermentation but
also because of their ability to combat several pathogens [8]. To the
best of our knowledge, no research activities have been performed
in the field of equine probiotic strategy, revealing the impact of
Lactobacilli, particularly Lactobacillus farciminis on the GP in horses.
However, the beneficial impact of exogenous Lactobacilli and other
probiotics in horses toward digestibility and fermentation end-
products as well as acute enterocolitis treatment has been
reported [9,10].

Based on previous investigations, Lactobacillus sp. is supposed to
enhance digestion of high-fiber feeds of poor quality in the hindgut
of horses. Thus, this study was aimed to elucidate the impact of
exogenous Lactobacilli (L. farciminis) on fecal gas kinetics (in vitro
GP, CH4, and CO2 emission) through oat straw digestion as in-
dicators of the fermentative activity in the hindgut of horses.

2. Materials and Methods

All procedures implied in handling animals of this study were in
compliance with the guidelines of the Mexican Official Mexican
Standard 062-ZOO-1999.

2.1. Preparation of Bacterial Inoculum

Rumen medium dispersed in a buffer as described by Goering
and Van Soest [11] was inoculated with 3 � 1011 CFU/g (colony
forming unit/gram) of L. farciminis (a commercial product of SAFI-
SIS, Toluca, Mexico) and then incubated for 24 hours at 30�C under
static conditions after saturation with CO2 for 10 minutes.

2.2. Substrate and Treatments

The mixture of oat straw and a commercial concentrate
(PURINA, Toluca, Mexico) at 1:1 (w/w DM) was used as a substrate
for the in vitro fecal evaluation (Table 1). Before usage, the substrate
was dried at 60�C for 48 hours. Four doses (0, 2, 4, and 6mg/g DM of
Table 1
Chemical composition of ingredients and total mixed ration used (g/kg DM).

Substrate Organic
Matter

Crude
Protein

Neutral
Detergent
Fiber

Acid
Detergent
Fiber

Concentrate 901.8 112 511 202.8
Oat straw 929.4 26.7 668.7 405.1
Total mixed ration 915.6 69.4 589.8 303.9
substrate) of L. farciminis were applied in the in vitro fecal
fermentation study.

2.3. In Vitro Incubation

Four Azteca horses (aged 5e8 years, 480 ± 20.1 kg) were used
for fecal content (inoculum source) collection. The horses were fed
ad libitum with the substrate mentioned above. Fresh water was
made available to the animals 1 week before the collection phase.
Fecal samples were obtained from the rectum of the horses. Culture
broth was added to the fecal contents in a ratio of 4:1. The mixture
was kept under CO2 environment throughout the entire in vitro
incubation process (39�C; 48 hours). All incubations were per-
formed in triplicate and either rumen fluid or fecal fluidwas used as
a blank. Gas, CO2, and CH4 productionwere estimated after 2, 4, 6, 8,
10, 12, 14, 24, and 48 hours of incubation using the pressure reading
technique [12] or a Gas-Pro detector (Gas Analyzer CROWCON
Model Tetra3, Abingdon, UK). Furthermore, pH was measured and
after filtration, dry matter degradability (DMD) was estimated [13].

2.4. Chemical Analyses and Calculations

Dry matter, ash, nitrogen, acid detergent fiber, and lignin con-
tent of the substrate were determined according to the Association
of Official Analytical Chemists [14]. For neutral detergent fiber
quantification, the methodology of Van Soest et al [15] was
employed. Kinetic parameters of GP (mL/g DM) were obtained by
fitting the data according to France et al [16] using the NLIN option
of SAS [17]. Metabolizable energy (ME) and DMD were calculated
according to Menke et al [18].

2.5. Statistical Analyses

Fecal fermentation data were analyzed as a completely ran-
domized design using the PROC GLM option of SAS:

Yij ¼ mþ Bi þ εij

where, Yij ¼ observation obtained with ith level of LAB; Bi ¼ level of
LAB (I ¼ 1e4); m ¼ general mean; εij ¼ experimental error.

Linear and quadratic polynomial contrasts were used to evaluate
responses for increasing levels of L. farciminis. Turkey's test was
employed to measure multiple comparisons among means. Sig-
nificance level was declared at P < .05.

3. Results

Asymptotic GP (linear effect, P ¼ .001), asymptotic CH4 pro-
duction (linear, P ¼ .021; quadric, P ¼ .034), and asymptotic CO2
production (linear, P ¼ .042; quadric, P ¼ .031) were observed to be
higher in the presence of L. farciminis in a dose-dependent manner.
However, no effect (P > .05) of L. farciminis supplementation on the
rate of gas, CH4, and CO2 production as well as on the lag times was
observed (Table 2).

Furthermore, an increase in ME (linear, P ¼ .001) was observed
in the presence of L. farciminis. L. farciminis addition did not result in
a significant effect on DMD values (P > .05). Fermentation pH was
shown to be slightly lower (P ¼ .029) in the presence of L. farciminis
(Table 2).

In vitro gas and CH4 productionwere increased (linear, P¼ .001)
in the presence of L. farciminis from 6 hours of incubation onward
(Table 3). Carbon dioxide production was also increased signifi-
cantly (linear, P < .001) after 6, 24, and 48 hours of incubation in the
presence of L. farciminis (Table 3).



Table 2
In vitro horse fecal gas kinetics, CH4, and CO2 production and fermentation kinetics of a total mixed ration of oat straw and concentrate (1:1) as affected by different levels of
Lactobacillus farciminis (mg/g DM of substrate).

L. farciminis Doses GPa CH4 Productionb CO2 Productionc Fecal Fermentation Kinetics

b c L b c L b c L pH ME DMD

0 150.6 0.136 1.56 32.1 0.016 3.48 93.8 0.0178 5.11 6.82 7.01 0.500
2 166.2 0.132 1.79 35.5 0.015 3.99 103.5 0.0173 5.86 6.80 7.42 0.469
4 192.0 0.141 1.76 41.0 0.016 3.92 119.6 0.0184 5.77 6.73 8.14 0.477
6 208.8 0.148 1.91 44.6 0.017 4.26 130.0 0.0194 6.26 6.73 8.61 0.503
SEM 5.90 0.0079 0.082 2.34 0.0011 0.126 3.65 0.0012 0.362 0.026 0.142 0.0125
Linear 0.001 0.709 0.128 0.021 0.122 0.235 0.042 0.142 0.32 0.029 0.001 0.228
Quadratic 0.498 0.501 0.251 0.034 0.241 0.521 0.031 0.354 0.421 0.451 0.405 0.237

Abbreviations: CH4, methane; CO2, carbon dioxide; DMD, dry matter degradability; GP, gas production; ME, metabolizable energy; SEM, standard error of the mean.
a b is the asymptotic GP (mL/g DM); c is the rate of GP (/h); and L is the initial delay before GP begins (h).
b b is the asymptotic CH4 production (mL/g DM); c is the rate of CH4 production (/h); and L, is the initial delay before CH4 production begins (h).
c b is the asymptotic CO2 production (mL/g DM); c is the rate of CO2 production (/h); and L, is the initial delay before CO2 production begins (h).
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4. Discussion

In the last few years, equine nutritionists have concentrated to
mitigate the risks associated with feeding high-starch concentrates
to horses. One focus in this respect has been the supplementation
of probiotics into the diets. High concentrate fed diets supple-
mentedwith direct-fedmicroorganisms or probiotics was shown to
reduce the risk of several disorders. Probiotics are used as feed
additives that enhance intestinal microbial balance and digestive
health in the host animal. Among probiotics, the genus Lactobacillus
is the most frequently exploited LAB [19]. In spite of the broad
applications of LAB in the feed preparations intended for equine, no
peer-reviewed research has evidenced the efficacy of either a single
strain or a multiple strain, particularly in terms of nutrient diges-
tion, in vitro gas, CH4 and CO2 production, and fermentation ki-
netics in mature horses.

Previously, a tremendous effort had been undertaken to assess
the impact of LAB supplementation on fermentation end-products
and digestibility in horses fed high- and low-starch concentrates
[10]. Addition of Enterococcus faeciumwas shown to result in higher
ether extracts (P < .05) and a decreased sodium (P < .1) digestibility.
The supplementation of LAB was reported to increase copper
(P < .05), iron, and zinc digestibility in horses. Furthermore, a
limited effect on the nutrient digestibility and the lack of acidosis
associated with feeding high-starch concentrates was observed.

Probiotic supplements intended for horses may aid in support-
ing digestive health, promote efficient digestion, inhibit the growth
of pathogenic bacteria, reduce side effects associated with anti-
biotic administration, increase lactation in mares, increase growth
in foals, and reduce the incidence of various disorders. In the pre-
sent study, a successful attempt was undertaken to fulfill the gap in
equine research and to demonstrate an increase in in vitro cumu-
lative gas, CH4, and CO2 production from a high-fiber substrate in
the presence of L. farciminis.
Table 3
In vitro horse fecal gas, CH4, and CO2 production (mL/g DM) of a total mixed ration of oat st
levels of L. farciminis (mg/g DM of substrate).

L. farciminis Doses In vitro GP CH4 Prod

6 h 24 h 48 h 6 h

0 83.2 144.1 150.3 17.8
2 90.7 159.1 165.9 19.4
4 109.3 185.3 191.8 23.3
6 123.0 202.8 208.6 26.3
SEM 3.02 5.23 5.85 0.64
Linear 0.001 0.001 0.001 <0.001
Quadratic 0.177 0.406 0.492 0.038

Abbreviations: CH4, methane; CO2, carbon dioxide; GP, gas production; SEM, standard e
4.1. In Vitro Fecal Gas Production

Supplementation of the oat strawecontaining diet with
L. farciminis resulted in higher asymptotic gas, CH4, and CO2 pro-
duction. This may be attributed to the ability of L. farciminis to
metabolize components of the used substrate. In general, incor-
poration of L. farciminis in horse feed improved fecal fermentation,
and therefore asymptotic GP. In line with the finding of the present
investigation, a more balanced microbial population in the hindgut
of horses and an increase in feed digestibility, and therefore more
efficient energy utilization from the diets were reported when the
feed was supplemented with live microorganisms [20]. The
observed increase in GP is linked to a higher fermentation activity
in the in vitro system [21]. This is due to a better availability of
nutrients for microbial fermentation and results in an improved
nutrient degradability [22]. Gases such as H2, CH4, and CO2 are
mainly produced due to the microbial activity on dietary
carbohydrates.

In the present study, no effect of L. farciminis on the fermenta-
tion rate and the lag time of GP were observed. This is in contrast to
previous results, where a reduction in the rate of GP was estimated
in the presence of live microorganisms [21,23]. The different types
and chemical composition of the substrates used in those studies
might explain the observed differences.
4.2. Fecal Fermentation Kinetics

Supplementation of the diets with L. farciminis was found to
affect fermentation pH, ME, and DMD. Fermentation pHwas shown
to be lowered in the presence of L. farciminis. This effect could be
explained by the production of lactic acid by this group of micro-
organisms [24]. The observed increased in ME might be due to a
stimulation of the microbial activity in the hindgut by L. farciminis,
raw and concentrate (1:1) at 6, 24, and 48 hours of incubation, as affected by different

uction CO2 Production

24 h 48 h 6 h 24 h 48 h

30.8 32.1 51.8 89.7 93.6
34.0 35.4 56.5 99.1 103.3
39.6 40.9 68.1 115.4 119.5
43.3 44.5 76.6 126.3 129.9
1.12 1.25 1.9 3.3 3.6
<0.001 <0.001 0.0 0.0 0.0
0.087 0.105 0.1 0.3 0.3

rror of the mean.
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which should result in an improved nutrient digestion. However,
L. farciminis supplementation did not affect DMD significantly.

4.3. Methane and Carbon Dioxide Production

A dose-dependent increase in the rate of in vitro gas, CH4, and
CO2 production was observed after 48 hours of incubation in the
presence of L. farciminis. The averagemean retention time of feed in
the gastrointestinal tract of a horse was reported to be between 36
and 38 hours [25,26]. Incubation of either grains or forages with
feces as inoculum is known to result in the production of significant
amounts of fermentation gas and an increase in the lag phase [27].
This might be due to the presence of different microorganisms in
the feces [23]. An additional effect of probiotics was shown to be
dependent on several factors such as source, type, and dose of the
probiotic as well as the composition of the animal diet [27]. In
contrast to the present study, Mwenya et al [28] reported that live
microorganisms such as yeasts have the capability to shift H2 uti-
lization frommethanogenesis to the production of acetate fromCO2
and H2 using homoacetogenic bacteria. In addition, a 20% reduction
in CH4 production after 48 hours of alfalfa incubation in the pres-
ence of live microorganisms was observed [29]. Furthermore,
Newbold and Rode [30] reported a significant reduction in CH4
production due to the supplementation of live yeasts.

5. Conclusion

L. farciminis at doses from 2 to 6 mg/g DM of diet was shown to
improve GP and fermentation kinetics. Thus, L. farciminis fed to
horses at the above mentioned doses could improve hindgut
digestion of high-fiber roughages such as oat straw. In vitro CH4
production was increased in the presence of L. farciminis from
6 hours of incubation. Carbon dioxide emission was also increased
after 6, 24, and 48 hours of incubation at diversified doses of
L. farciminis. However, further in vivo studies certainly need to be
performed to fully elucidate the potential of supplementing horse
diets with diversified doses of L. farciminis, particularly in terms of
fermentation kinetics in the hindgut of the animals.
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